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The dynamic response of a girder bridge under high-speed trains is studied, with
an emphasis on the resonant vibration. Two dynamic models for the vehicle are
presented to predict the dynamic response of the girder bridge. In the "rst model,
the vehicles are simpli"ed as a series of moving loads. In the second model, the
vehicle}bridge interaction system is considered. The results show that the
resonance for small and medium-span girder bridges may occur under a high-speed
train consisting of a number of vehicles with similar types, and the resonance is
caused by the free vibration. The main factors that in#uence the resonant vibration
are investigated; the relations of resonance speeds to the parameters of the girder
bridge as well as the vehicle are given.
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1. INTRODUCTION

The investigation of dynamic behavior of a girder bridge under moving vehicle
loads dates back to many years ago. In early studies, moving vehicles travelling
along a bridge were modelled as moving loads or rolling masses [1, 2]. During the
past three decades, considerable experimental and theoretical research on the
dynamic response of bridges has been carried out. More sophisticated models that
consider the various dynamic characteristics of vehicles have been implemented in
the study of vehicle}bridge interactions [3, 4]. Meanwhile, the e!ects of track
irregularities and wheel #atness on the dynamic response of a bridge have been
investigated [5, 6]. Recently, the vehicle}bridge interaction element [7] has been
developed for modelling the vehicle}bridge interaction in an analysis of railway
bridges under high-speed trains, which may consist of a number of cars connected
together.

It is generally known that if the forced-vibration term alone is considered, the
resonance cannot occur for a short-span girder bridge under moving loads since the
loading frequency is generally quite low compared with the natural frequency at the
present speed of the train [8]. Even if the loading frequency and natural frequency
coincide, the resonance is not a true one since there is only one-half cycle of loading
as the force crosses the span. However, the results of "eld tests of railway bridges in
Japan and China [9}11] have shown a heavy dynamic response exceeding the
anticipation on certain short-span concrete and steel girder bridges. In this case, the
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resonance caused by a train consisting of a number of vehicles with similar types is
the most important factor, especially at the high-speed range. Such phenomena of
resonance have been studied by Yang et al. [12]. In their study, the resonant and
cancellation e!ects of waves generated by the motion of wheel loads on the simple
beam have been related to the ratio of the railroad car to bridge lengths, and the
optimal design criteria that are e!ective for suppressing the resonant responses are
proposed.

The main purpose of this paper is to further investigate the fundamental charac-
teristics and the in#uential factors for the resonant vibration of a girder bridge
under high-speed trains. The study includes two dynamic models for vehicles
moving at a constant speed over a bridge. In the "rst model, a number of vehicles
with similar types are considered as a series of moving loads moving over a girder
bridge; in the second model, the dynamic interaction between the vehicle and
bridge is adopted. Based on the analysis of the free- and forced-vibration responses
of the girder bridge under a series of moving loads, the results show that the
resonance is caused by the free vibration.

2. DYNAMIC RESPONSE OF A GIRDER BRIDGE UNDER MOVING LOADS

2.1. VIBRATION MODE EQUATION OF A GIRDER BRIDGE

Since this paper deals mainly with small- and medium-span simply supported
girder bridges, it suggests that modes higher than the fundamental one may be
neglected without serious loss of accuracy when calculating the de#ections and
bending moments [8]. The analysis of the vertical vibration can include the
fundamental mode alone. It would be reasonable to expect the vertical
displacement to vary with x and t as distinctly separate functions. We shall
therefore assume that

y(x, t)"q (t)/ (x), (1)

where y(x, t) is the vertical displacement, /(x)"sin(nx/¸
b
) is the fundamental mode

shape, ¸
b
is the span length, and q(t) are the generalized co-ordinates that de"ne the

amplitude of vibration with time.
Let the "rst and last moving loads on the span be P

K
and P

M
at time t (Figure 1).

If the fundamental mode of the girder bridge alone is taken into account, the
equation of vertical motion in generalized co-ordinates under a series of moving
loads at a constant speed can be expressed as
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where m, u and m are the mass per unit length, the "rst circular frequency and the
damping ratio, l is the velocity of moving loads, P

i
is the ith moving load and a

i
is

the distance between moving loads P
i
and P

1
(Figure 1).

Let r
i
be the distance between two adjacent loads P

i
and P

i~1
(Figure 1). When

r
i
is assumed to be constant, r

i
"r, and the generalized load in equation (2) is



Figure 1. A girder bridge subjected to a series of moving loads.

Figure 2. Generalized load against time.
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a periodic function with two frequency components (Figure 2). One is the
frequency, fl1 ("l/2¸

b
), of each moving load travelling across the bridge. Another

is the frequency, fl2 ("l/r), of a series of moving loads acting periodically on the
bridge. Figure 2 represents the generalized load against time when 10 moving loads
move over a 32 m girder bridge at a constant speed of l"37 m/s, in which case the
distance r between two adjacent loads is 21 m and the magnitude of each moving
load is 160 kN.

2.2. SOLUTION OF THE MODE EQUATION

Before considering the general case of a girder bridge under a series of moving
loads, it is instructive to examine the response to a single moving load. If there is



Figure 3. Half-sine-wave impulse.
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only the ith moving load P
i

moving over the bridge at a constant speed, the
generalized load on the right hand side of equation (2) consists of a half-sine-wave
impulse with the frequency fl1"v/2¸

b
, as shown in Figure 3. The response will be

divided into two phases, corresponding to the interval during which the moving
load acts [13].

Phase 1. When the ith moving load is on the bridge, ignoring the di!erence
between the damped and undamped frequencies, the response, including the
free-vibration term (the transient term) as well as the forced-vibration term (the
steady state term), can be written in the form
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where y
st
"2P

i
¸3

b
/n4EI+P

i
¸3

b
/48EI is the static de#ection at midspan when the

moving load P
i
acts on midspan; b"nl/¸

b
u is the speed parameter which is the

ratio of the circular frequency of a single load travelling across the bridge to the
natural frequency u.

It is clear that the damping ratio of the actual bridge is smaller (m(0)05) and the
loading circular frequency nl/¸

b
is generally quite low compared with the natural
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frequency u. Thus, neglecting the term mb in equation (3), the response is written as
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Phase 2. After the load P
i
leaves the span, the free-vibration motion that occurs

during this phase will depend on the generalized displacement qi(t@) and the velocity
qR i(t@) existing at the end of phase 1, and it can be expressed as follows:

for t*t@,

qi(t)"e~mu(t~t{)C
qR i(t@)#muqi(t@)

u
sinu (t!t@)#q(t@) cosu(t!t@)D, (5)

where t@"a
i
/l#¸

b
/l is the time when load P

i
leaves the span. Substituting t@ and

qi (t@), qR i (t@) into equation (5), the response of free vibration becomes:
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The dynamic response of the bridge under a series of moving loads can be
obtained by the principle of superposition. Thus, the total responses to a series of
moving loads are the sum of the response to each moving load.

If the "rst and last moving loads on the span are P
1

and P
M

at time t (Figure 4),
the response may be expressed as follows:
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If the number of moving loads out of the span is K!1 and the number of
moving loads on the span is M!K#1, at time t (Figure 1), the response becomes:
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Figure 4. A girder bridge under moving loads from P
1

to P
M

.
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It is noted in equation (8) that the response consists of four terms. The "rst term
on the right-hand side of equation (8) represents the response component at the
frequency of each moving load travelling across the bridge; it is the forced-vibration
response. The second and third terms are the response component at natural
frequency and are the free-vibration e!ects caused by the sudden application of the
force. The fourth term is also the free vibration after moving loads leave the span.

2.3. FORCED-VIBRATION RESPONSE

If the fundamental mode of the girder bridge alone is taken into account, the
de#ection at midspan is given by

y (t)"/ A
¸
b

2 B q (t)"q (t) sin
n
2
"q(t).

Clearly, dynamic response components due to forced vibration in equations (7)
and (8) increase with speed. Therefore, it is natural to wonder what happens if the
frequency of each moving load travelling across the bridge and the natural



Figure 5. Midspan de#ection under ten moving loads.*, The crawl de#ection, ---- due to enforced
vibration.
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frequency coincide. In this case, the resonance due to forced vibration does not
really occur since there is only one-half cycle of loading as each moving load crosses
the span. However, for the small- and medium-span girder bridges, the frequency of
each moving load travelling across the bridge in actual speed ranges is generally
quite low compared with the natural frequency. If the frequency of each moving
load travelling across the bridge agrees with the natural frequency, the speed will be
too high for actual vehicles to reach. For example, Figure 5 represents the crawl
de#ection and the de#ection due to forced-vibration components at midspan of
a 32 m deck girder bridge subjected to 10 moving loads at a constant speed
l"55)56 m/s. The natural frequency of the girder is 5)3 Hz and the distance
between two adjacent moving loads is 21 m. The magnitude of each moving load is
160 kN. It can be seen from Figure 5 that the de#ection at midspan caused by the
forced-vibration components approaches the crawl de#ection. In this case, the
speed at which the frequency of each moving load travelling across the bridge
agrees with the natural frequency would be 339)4 m/s.

2.4. FREE-VIBRATION RESPONSE

Let us consider a series of moving loads with uniform intervals r. The distance a
i

between moving loads P
i
and P

1
is given by

a
i
"(i!1)r (i"1, 2, 3,2 , N). (9)

When J times of the frequency component due to a series of moving loads acting
periodically on the bridge equal to the natural frequency, it is evident that

J
l
r
"

u
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(J"1, 2, 3,2 ). (10)
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Substituting equation (10) into equations (7) and (8), the free-vibration response
components can be written as follows:
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Neglecting damping, equation (12) becomes
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When equation (10) holds, the di!erence of the phase angles for the free-vibration
components in equations (7) and (8) caused by each moving load passing over the
bridge is 2nm (m"1, 2, 3,2). In this case, the sum of free-vibration-response
components generated by each moving load acting successively on the bridge
results in resonance if the total number of moving loads is large enough. The
velocities of moving loads for resonant response can be obtained from equation (10)
and are given by

l"
u

2nJ
r (J"1, 2, 3,2). (14)

For the example of a 32 m girder bridge subjected to 10 moving loads, the
velocity corresponding to J"2 for resonance is 55)56 m/s. In this case, Figure
6 shows the response-amplitude at midspan caused by free-vibration components
when the resonant response occurs if the damping of the girder is neglected.



Figure 6. Response-amplitude due to free-vibration components corresponding to J"2.
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2.4.1. Main factors in-uencing the resonant response

(1) ¹he values of J: In a practical case, the damping is always present in the
bridge. The physical meaning of J may be understood from equation (10).
After the free-vibration response caused by moving load P

i~1
has decayed for

J cycles due to the damping, this free-vibration response adds to that caused
by moving load P

i
(Figure 7). Thus, the resonant response-amplitude

decreases as the value of J increases.
(2) ¹he ratio of the span to the velocity of moving loads: If J times of the frequency

component due to a series of moving loads acting periodically on the bridge
agree with the natural frequency, it can be seen from equation (12) that the
ratio of the span to the velocity is an important factor in#uencing the
resonant response-amplitude.

In case the ratio of the span to the velocity is integer times the natural
period of the girder, namely

¸
b

l
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The di!erence of the phase angles between the "rst term and second term on
the right-hand side of equation (12) is 2nm (m"1, 2, 3,2). The two terms
get in phase and the resonant response-amplitude reaches the maximum.

However, if the ratio of span to velocity satis"es the following condition:

¸
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Figure 7. Response due to P
i~1

and P
i
. (a) due to P

i~1
; (b) due to P

i
; and (c) total response due to

P
i~1

and P
i
.
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namely, cos(u¸
b
/l)"!1, equation (12) becomes
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The di!erence of the phase angles between the "rst term and the second term
in equation (12) is nm (m"1, 3, 5,2). The two terms mentioned above
counteract each other and the resonant response amplitude is e!ectively
suppressed.

For the 32 m girder bridge, the variation of the response-amplitudes of the
midspan de#ection caused by the free-vibration components with the
velocities and damping ratios is shown in Figure 8. The total number of
moving loads is 20 and the magnitude of each moving load is 160 kN. The
distance between two adjacent loads is 21 m, and the natural frequency is
5)3 Hz. The velocities, the values of J and the span to velocity ratios are shown



Figure 8. Variation of response-amplitude with velocity and damping. - - - m"0)01;** m"0)02;
) ) ) m"0)04

TABLE 1

¹he values of J, the velocities, and the span to velocity ratios

J"1 J"2 J"3 J"4 J"5

Velocity (m/s) 111)3 55)65 37)10 27)82 22)59
cos(u¸

b
/l) !0)99 0)96 !0)90 0)826 !0)733
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in Table 1. It can be seen from Figure 8 and Table 1 that the
response-amplitude reaches its maximum when J"2 (corresponding
velocity l"55)65 m/s), and the response-amplitude is smaller when J"1
(corresponding velocity l"111)3 m/s). This is because the span to velocity
ratios have in#uenced the response-amplitude. It can be seen from Table
1 that cos(u¸/l)"0)96 (approaching 1)0) when J"2, and cos(u¸/l)"0)99
(approaching !1)0) when J"1.

(3) ¹he number of the moving loads: Figure 9 shows how the response of a 32 m
girder bridge builds up in the case where resonant response occurs when
J"2 (corresponding velocity l"55)65). In both cases with and without
damping, the response builds up gradually as the number of moving loads
increases. In the damped system as shown in Figure 9(b), the damping limits
the resonant response-amplitude. The number of moving loads required by
this damped resonant response to reach essentially its maximum amplitude
depends on the amount of damping. It is clearly seen from Figure 9(b) that
when damping ratio m"0)02, about 10 moving loads are required to reach
nearly the full response-amplitude.

(4) ¹he damping ratio: It can be seen from Figure 8 that the resonant
response-amplitude decreases very quickly as the damping ratio grows. Thus,
the increase of the damping for the bridge is an e!ective measure to reduce
resonant response-amplitudes.



Figure 9. The in#uence of the number of moving loads on resonant response amplitude. (a) without
damping; (b) the damping ratio m"0)02.
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3. VEHICLE}BRIDGE SYSTEM

The above analyses of a bridge under a series of moving loads are a useful
introduction to the vibration of a bridge under moving vehicles. However, in
practice the masses of vehicles may be signi"cant compared with the mass of
a bridge. It is necessary to investigate the dynamic response of the vehicle}bridge
system. A simpli"ed model of the vehicle}bridge system is shown in Figure 10. This
model consists of a series of successive vehicles and a bridge. Vehicle mass, wheel
mass as well as vehicle suspension are all considered.

3.1. THE VEHICLE MODEL

Each vehicle may be idealized as a model of a rigid body and four wheel}axle
sets, with two degrees of freedom if the vertical motion alone is considered [14]



Figure 10. The vehicle}bridge system.

Figure 11. The vehicle model.
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(Figure 11). The two trucks in the actual vehicle are assumed to form a part of the
car body. The two degrees of freedom of the vehicle correspond to bounce and pitch
motion. Let the subscripts j denote the vehicle number and k denote wheel-axle set
number of the jth vehicle; M

j
, J

j
are the mass and pitch moment of inertia

respectively, for each vehicle; Z
j
and u

j
are vertical and pitch displacements of the

jth vehicle from the equilibrium position. Referring to Figure 11, the vertical
motion equations for each vehicle can be expressed as

M
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(x)]; y
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(x, t) is the vertical displacement

of the wheel/rail contact point at time t; d
k
is the longitudinal distance between the

centroid of the jth vehicle and its kth wheel}axle set; w
jk

(x) is the rail irregularity at
the point beneath each wheel}axle set; and c

s
and k

s
represent the spring damping

and sti!ness of the vehicle's suspension system for each wheel-axle set.
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3.2. THE EQUATION OF MOTION FOR THE BRIDGE

When the interaction between the vehicle and bridge is taken into account,
the equation of motion (2) for the bridge in generalized co-ordinates can be
rewritten as

qK (t)#2muqR (t)#u2q(t)"
2

m¸
b

F(t), (16)

where F(t) is the interacting force between vehicles and a bridge expressed in the
generalized co-ordinates.

For the sake of convenience, now, the serial number of the wheel}axle set starts
from the "rst one of the "rst vehicle for a train. Let a

i
be the longitudinal distance

from the ith wheel}axle set to the "rst wheel}axle set of the train (Figure 10). If the
"rst and last wheel}axle sets on the span are the Kth and Mth wheel}axle sets,
respectively, at time t, F(t) is given by
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in which P
i
is the static weight of the ith wheel-axle, a quarter of the vehicle's

weight, m
s
is the mass of each wheel-axle set, yK

bi
(x, t)"qK (t) sinn (lt!a

i
)/¸

b
is the

acceleration of the bridge on the ith wheel-axle set, and uR
i
and u

i
are the velocity and

the deformation of suspension springs.
The generalized loads on the right-hand side of equation (17) consists of three

terms. The "rst term arises from the weight loads of a series of successive wheel}axle
sets moving over the bridge at a constant speed. The second part is due to the
negative inertia of the mass of the wheel}axle sets. The remaining term is caused by
the deformation of the spring of the vehicle's suspensions.

The "rst term of the generalized loads in equation (17) is the same as the
generalized loads caused by equivalent vehicles as a series of moving loads. If the
train consists of a number of vehicles and each vehicle length ¸l is constant, this
term is a periodic function with two frequency components (Figure 12). The "rst
frequency component fl1 ("l/2¸

b
) is due to each wheel}axle set travelling across

the bridge. The second frequency component fl2 ("l/¸
v
) is caused by weight loads

of a series of successive vehicles acting periodically on the bridge. Figure 12 shows
periodic variation of the generalized load due to the weight loads of a series of
successive vehicles with time t.

Equations (15) and (16) are coupled second-order equations with variable
coe$cients which can be solved by direct numerical integration. In this paper, the
Wilson-h method [13] is adopted.

Because the factors of the vertical vibration equations of the bridge}vehicle
system are variable with time, the natural frequency of the bridge under loaded



Figure 12. Generalized load due to the weight loads of a series of successive vehicles.

Figure 13. Variation of fundamental frequency with time.
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conditions will be obtained by the solution of eigenvalue at each step of the
numerical integration. Figure 13 shows the variation of the fundamental frequency
with time when a series of successive vehicles move over a 32 m deck girder bridge.
It can be seen from Figure 13 that the vertical fundamental frequency of the bridge
varies periodically with time. The lower frequency may be regarded as the loaded
frequency of the bridge.

From the analysis, it can be shown that if the integer times of the frequency
component fl2 due to weight loads of a series of successive vehicles acting
periodically on the bridge agree with the loaded frequency of the bridge, resonant
vibration response will appear.

4. NUMBER EXAMPLES

In order to investigate the vibration behavior of the simply supported girder
bridge under a high-speed train, the vertical vibration response for 16 and 32 m
deck girder bridges under the quasi-high-speed train will be presented.



Figure 14. The static weight of the wheel}axle and the distance between the wheel}axle.

TABLE 2

Dynamic characteristic of the deck girder bridge

Type of Bending inertia Mass per unit Fundamental Loaded
bridge moment (m4) length (t/m) frequency (Hz) frequency (Hz)

16 m 0)0032 1)880 11)60 10)52
32 m 0)1592 2)880 5)300 5)040

Figure 15. The de#ection amplitude at midspan of the 16 m deck girder-bridge.
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The static weight of the wheel}axle and the longitudinal distance between the
wheel}axle for a vehicle of the quasi-high-speed train is shown in Figure 14.
The dynamic characteristics of 16 and 32 m deck girder bridges are given in Table 2;
the damping ratio of these bridges is supposed to be 0)02.

The relationships between the dynamic de#ection amplitudes at the midspan for
16 and 32 m deck girder bridges and the speeds of the train are shown in Figures 15
and 16. Two curves are shown on each plot of Figures 15 and 16. The "rst curve (the
dashed line) is the predicted bridge response from equivalent vehicles as a series of
moving loads. The second curve is the result of the dynamic analysis using the
vehicle}bridge system. The resonant velocities and the span to speed ratios are
shown in Table 3. In this case, 10 vehicles travelling across the bridge at various
speeds are considered. When the vehicles are considered as a series of moving loads,
the natural frequency of the bridge is substituted by the loaded frequency.



Figure 16. The de#ection amplitude at midspan of the 32 m deck girder-bridge.

TABLE 3

¹he values of J, the peak-velocities and the ratios of span to velocities

J"1 J"2 J"3 J"4 J"5

16 m deck Resonant velocity (m/s) 279)580 139)700 93)1940 69)896 55)916
girder cos(u¸

b
/l) !0)515 !0)470 0)999 !0)559 !0)423

32 m deck Resonant velocity (m/s) 133)950 66)980 44)650 33)490 26)790
girder cos(u¸

b
/l) !0)107 !0)980 0)310 0)920 !0)482

Figure 17. The dynamic de#ection time curve at midspan of the girder calculated with the vehicle-
bridge model.
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From Figures 15 and 16, it can be seen that if the ratio of the vehicle body length
¸l to the velocity l satis"es equation (10), both the curves reach their peak values.
The ratios of the ¸l/l and the values of J are the main factors to in#uence the peak
values of the vibration response. For the 32 m deck girder bridge, when the train
moves at 44)65 m/s (corresponding to J"3) the greater peak values of the
vibration response may appear.

Figure 17 shows the time-history curve of dynamic de#ection at midspan
calculated by using the vehicle}bridge system for a 32 m deck girder bridge when
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the train moves over the bridge at a speed of 44)65 m/s (corresponding to J"3).
The results show clearly that the vertical resonance phenomenon of the girder
bridge is mainly caused by free vibrations arising from the weight loads of a series of
successive wheel}axles.

5. CONCLUSIONS

Based on the analyses of the free and forced-vibration responses of the girder
bridge using two dynamic models, the fundamental characteristics and the main
in#uential factors for the resonant vibration caused by a train have been
investigated in detail. Some useful results are obtained:

f When the periods due to weight loads of a series of successive vehicles acting
periodically on the bridge agree with the integer times of the fumdamental loaded
period, that is ¸l/l"2nJ/u (J"1, 2, 32 ), the sum of free-vibration response
components generated by each moving load acting successively on the bridge will
result in the resonance.

f If the ratio of span to velocity is constant, the resonant response-amplitudes
increase as the values of J decrease. However, in case of J being a constant, the
ratio of span to velocity, ¸

b
/l, is the main factor that a!ects the resonant

response-amplitude. If cos(u¸
b
/l) approaches !1)0, the resonant

response-amplitude may be suppressed.
f The number of vehicles travelling across the bridge is also an important factor. If

the number of vehicles is very small, resonance may not occur.
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